Chapter 2 Inverse Trigonometric Functions Exercise 2 CHSE Odisha Class 12 Math Solutions | Elements of Mathematics
Question 1.
Fill in the blanks choosing correct answer from the brackets:
(i) If A = tan-1 x, then the value of sin 2A = ________. (2x1−x2 , 2x1−x2√ , 2x1+x2 )
Solution:
(ii) If the value of sin-1 x = π5 for some x ∈ (-1, 1) then the value of cos-1 x is ________. (3π10 , 5π10 ,3π10 )
Solution:
(iii) The value of tan-1 x (2cosπ3 ) is ________. (1, π4 , π3 )
Solution:
(iv) If x + y = 4, xy = 1, then tan-1 x + tan-1 y = ________. (3π4 , π4 , π3 )
Solution:
(v) The value of cot-1 2 + tan-1 13 = ________. (π4 , 1, π2 )
Solution:
(vi) The principal value of sin-1 (sin 2π3 ) is ________. (2π3 , π3 , 4π3 )
Solution:
(vii) If sin-1 x5 + cosec-1 54 = π2 , then the value of x = ________. (2, 3, 4)
Solution:
x = 3
(viii) The value of sin (tan-1 x + tan-1 1x ), x > 0 = ________. (0, 1, 1/2)
Solution:
1
(ix) cot-1 [1−sinx√+1+sinx√1−sinx√−1+sinx√] = ________. (2π – x2 , x2 , π – x2 )
Solution:
π –
(x) 2sin-1 45 + sin-1 2425 = ________. (π, -π, 0)
Solution:
π
(xi) if Θ = cos-1 x + sin-1 x – tan-1 x, x ≥ 0, then the smallest interval in which Θ lies is ________. [(π2 , 3π2 ), [0, π2 ), (0, π2 ])
Solution:
(0, π2 ]
(xii) sec2 (tan-1 2) + cosec2 (cot-1 3) = ________. (16, 14, 15)
Solution:
15
Question 2.
Write whether the following statements are true or false.
(i) sin-1 1x cosec-1 x = 1
Solution:
False
(ii) cos-1 45 + tan-1 23 = tan-1
Solution:
True
(iii) tan-1 43 + cot-1 (−34 ) = π
Solution:
True
(iv) sec-1 12 + cosec-1 12 =
Solution:
False
(v) sec-1 (-75 ) = π – cos-1
Solution:
True
(vi) tan-1 (tan 3) = 3
Solution:
False
(vii) The principal value of tan-1 (tan 3π4 ) is
Solution:
False
(viii) cot-1 (-√3) is in the second quadrant.
Solution:
True
(ix) 3 tan-1 3 = tan-1
Solution:
False
(x) tan-1 2 + tan-1 3 = –
Solution:
False
(xi) 2 sin-1 45 = sin-1
Solution:
False
(xii) The equation tan-1 (cotx) = 2x has exactly two real solutions.
Solution:
True
Question 3.
Express the value of the following in simplest form.
(i) sin (2 sin-1 0.6)
Solution:
sin (2 sin-1 0.6)
(ii) tan (π4 + 2 cot-1 3)
Solution:
(iii) cos (2 sin-1 x)
Solution:
(iv) tan (cos-1 x)
Solution:
(v) tan-1 (xy ) – tan-1
Solution:
(vi) cosec (cos-1 35 + cos-1 45 )
Solution:
(vii) sin-1 15√ + cos-1
Solution:
(viii) sin cos-1 tan sec √2
Solution:
sin cos-1 tan sec √2
= sin cos-1 tan sec
= sin cos-1 1 = sin 0 = 0
(ix) sin (2 tan-1 1−x1+x−−−√ )
Solution:
(x) tan
Solution:
(xi) sin cot-1 cos tan-1 x.
Solution:
(xii) tan-1
Solution:
Question 4.
Prove the following statements:
(i) sin-1 35 + sin-1 817 = cos-1
Solution:
(ii) sin-1 35 + cos-1 1213 = cos-1
Solution:
(iii) tan-1 17 + tan-1 113 = tan-1
Solution:
(iv) tan-1 12 + tan-1 15 + tan-1 18 =
Solution:
(v) tan ( 2tan-1 15 – π4 ) + 717 = 0
Solution:
Question 5.
Prove the following statements:
(i) cot-1 9 + cosec-1 41√4 =
Solution:
(ii) sin-1 45 + 2 tan-1 13 =
Solution:
(iii) 4 tan-1 15 – tan-1 170 + tan-1 199 =
Solution:
(iv) 2 tan-1 15 + sec-1 52√7 + 2 tan-1 18 =
Solution:
(v) cos-1 1213 + 2 cos-1 6465−−√ + cos-1 4950−−√ = cos-1
Solution:
(vi) tan2 cos-1 13√ + cot2 sin-1 15√ = 6
Solution:
tan2 cos-1 13√ + cot2 sin-1
= tan2 tan-1 √2 + cot2 cot-1 (2)
= 2 + 4 = 6
(vii) cos tan-1 cot sin-1 x = x.
Solution.
Question 6.
Prove the following statements:
(i) cot-1 (tan 2x) + cot-1 (- tan 2x) = π
Solution:
(ii) tan-1 x + cot-1 (x + 1) = tan-1 (x2 + x + 1)
Solution:
(iii) tan-1 (a−b1+ab ) + tan-1 (b−c1+bc ) = tan-1 a – tan-1 c.
Solution:
tan-1 (a−b1+ab ) + tan-1 (b−c1+bc )
= tan-1 a – tan-1 b + tan-1 b – tan-1 c
= tan-1 a – tan-1 c.
(iv) cot-1 pq+1p−q + cot-1 qr+1q−r + cot-1 rp+1r−p = 0
Solution:
(v)
Solution:
Question 7.
Prove the following statements:
(i) tan-1 2a−bb3√ + tan-1 2b−aa3√ =
Solution:
(ii) tan-1 1x+y + tan-1 yx2+xy+1 = tan-1
Solution:
(iii) sin-1 x−qp−q−−−√ = cos-1 p−xp−q−−−√ = cot-1
Solution:
(iv) sin2 (sin-1 x + sin-1 y + sin-1 z) = cos2 (cos-1 x + cos-1 y + cos-1 z)
Solution:
(v) tan (tan-1 x + tan-1 y + tan-1 z) = cot (cot-1 x + cot-1 y + cot-1 z)
Solution:
Question 8.
(i) If sin-1 x + sin-1 y + sin-1 z = π, show that x1−x2−−−−−√ + x1−y2−−−−−√ + x1−z2−−−−−√ = 2xyz
Solution:
Let sin-1 x = α, sin-1 y = β, sin-1 z = γ
∴ α + β + γ = π
∴ x = sin α, y = sin β, z = sin γ
or, α + β = π – γ
or, sin(α + β) = sin(π – γ) = sin γ
and cos(α + β) = cos(π – γ) = – cos γ
(ii) tan-1 x + tan-1 y + tan-1 z = π show that x + y + z = xyz
Solution:
(iii) tan-1 x + tan-1 y + tan-1 z = π2 . Show that xy + yz + zx = 1
Solution:
or, 1 – xy – yz – zx = 0
⇒ xy + yz + zx = 1
(iv) If r2 = x2 +y2 + z2, Prove that tan-1 yzxr + tan-1 zxyr + tan-1 xyzr =
Solution:
(v) In a triangle ABC if m∠A = 90°, prove that tan-1 ba+c + tan-1 ca+b = π4 . where a, b, and c are sides of the triangle.
Solution:
L.H.S. tan-1 ba+c + tan-1
Question 9.
Solve
(i) cos (2 sin-1 x) = 1/9
Solution:
(ii) sin-1 x + sin-1 (1 – x) =
Solution:
sin-1 x + sin-1 (1 – x) =
or, sin-1 (1 – x) = π2 – sin-1 x = cos-1 x
or, sin-1 (1 – x) = sin-1
or, 1 – x =
or, 1 + x2 – 2x = 1 – x2
or, 2x2 – 2x = 0
or, 2x (x – 1) = 0
∴ x = 0 or, 1
(iii) sin-1 (1 – x) – 2 sin-1 x =
Solution:
sin-1 (1 – x) – 2 sin-1 x =
⇒ – 2 sin-1 x = π2 – sin-1 (1 – x)
⇒ cos-1 (1 – x)
⇒ cos (– 2 sin-1 x) = 1 – x ….. (1)
Let sin-1 Θ ⇒ sin Θ
Now cos (– 2 sin-1 x) = cos (-2Θ)
= cos 2Θ = 1 – 2 sin2 Θ = 1 – 2x2
Using in (1) we get
1 – 2x2 = 1 – x
⇒ 2x2 – x = 0 ⇒ x (2x – 1) = 0
⇒ x = 0, ½, But x = ½ does not
Satisfy the given equation, Thus x = 0.
(iv) cos-1 x + sin-1 x2 =
Solution:
(v) tan-1 x−1x−2 + tan-1 x+1x+2 =
Solution:
(vi) tan-1 12x+1 + tan-1 14x+1 = tan-1
Solution:
(vii) 3 sin-1 2x1+x2 – 4 cos-1 1−x21+x2 + 2 tan-1 2x1−x2 =
Solution:
(viii) cot-1 1x−1 + cot-1 1x + cot-1 1x+1 = cot-1
Solution:
(ix) cot-1 1−x22x = cosec-1 1+a22a – sec-1
Solution:
(x) sin-1 (2a1+a2) + sin-1 (2b1+b2) = 2 tan-1 x
Solution:
(xi) sin-1 y – cos-1 x = cos-1
Solution:
(xii) sin-1 2x + sin-1 x =
Solution:
Question 10.
Rectify the error if any in the following:
sin-1 45 + sin-1 1213 + sin-1
Solution:
Question 11.
Prove that:
(i) cos-1 (b+acosxa+bcosx) = 2 tan-1
Solution:
(ii) tan (π4+12cos−1ab) + tan
Solution:
(iii) tan-1 xryz−−√ + tan-1 yryx−−√ + tan-1 zrxy−−√ = π where r = x + y +z.
Solution:
Question 12.
(i) If cos-1 (xa ) + cos-1 (yb ) = Θ, prove that x2a2 – 2xab cos Θ + y2b2 = sin2 Θ.
Solution:
(ii) If cos-1 (xy ) + cos-1 (y3 ) = Θ, prove that 9x2 – 12xy cos Θ + 4y2 = 36 sin2 Θ.
Solution:
(iii) If sin-1 (xa ) + sin-1 (yb ) = sin-1 (c2ab ) prove that b2x2 + 2xy a2b2−c4−−−−−−−√ a2y2 = c2
Solution:
(iv) If sin-1 (xa ) + sin-1 (yb ) = α prove that x2a2 + 2xyab cos α + y2b2 = sin2 α
Solution:
(v) If sin-1 x + sin-1 y + sin-1 z = π prove that x2 + y2 + z2 + 4x2y2z2 = 2 ( x2y2 + y2z2 + z2x2 )
Solution:
Question 13.
Solve the following equations:
(i) tan-1 x−1x+1 + tan-1 2x−12x+1 = tan-1
Solution:
(ii) tan-1 13 + tan-1 15 + tan-1 17 + tan-1 x =
Solution:
(iii) cos-1 (x+12) + cos-1 x+ cos-1 (x−12) =
Solution:
(iv) 3tan-1 12+3√ – tan-1 1x = tan-1
Solution:
Tags:
class 12th