Chapter 2 Inverse Trigonometric Functions Exercise 2 CHSE Odisha Class 12 Math Solutions | Elements of Mathematics
Question 1.
Fill in the blanks choosing correct answer from the brackets:
(i) If A = tan-1 x, then the value of sin 2A = ________. (2x1−x2 , 2x1−x2√ , 2x1+x2 )
Solution:
(ii) If the value of sin-1 x = π5 for some x ∈ (-1, 1) then the value of cos-1 x is ________. (3π10 , 5π10 ,3π10 )
Solution:
(iii) The value of tan-1 x (2cosπ3 ) is ________. (1, π4 , π3 )
Solution:
(iv) If x + y = 4, xy = 1, then tan-1 x + tan-1 y = ________. (3π4 , π4 , π3 )
Solution:
(v) The value of cot-1 2 + tan-1 13 = ________. (π4 , 1, π2 )
Solution:
(vi) The principal value of sin-1 (sin 2π3 ) is ________. (2π3 , π3 , 4π3 )
Solution:
(vii) If sin-1 x5 + cosec-1 54 = π2 , then the value of x = ________. (2, 3, 4)
Solution:
x = 3
(viii) The value of sin (tan-1 x + tan-1 1x ), x > 0 = ________. (0, 1, 1/2)
Solution:
1
(ix) cot-1 [1−sinx√+1+sinx√1−sinx√−1+sinx√] = ________. (2π – x2 , x2 , π – x2 )
Solution:
π –
(x) 2sin-1 45 + sin-1 2425 = ________. (π, -π, 0)
Solution:
π
(xi) if Θ = cos-1 x + sin-1 x – tan-1 x, x ≥ 0, then the smallest interval in which Θ lies is ________. [(π2 , 3π2 ), [0, π2 ), (0, π2 ])
Solution:
(0, π2 ]
(xii) sec2 (tan-1 2) + cosec2 (cot-1 3) = ________. (16, 14, 15)
Solution:
15
Question 2.
Write whether the following statements are true or false.
(i) sin-1 1x cosec-1 x = 1
Solution:
False
(ii) cos-1 45 + tan-1 23 = tan-1
Solution:
True
(iii) tan-1 43 + cot-1 (−34 ) = π
Solution:
True
(iv) sec-1 12 + cosec-1 12 =
Solution:
False
(v) sec-1 (-75 ) = π – cos-1
Solution:
True
(vi) tan-1 (tan 3) = 3
Solution:
False
(vii) The principal value of tan-1 (tan 3π4 ) is
Solution:
False
(viii) cot-1 (-√3) is in the second quadrant.
Solution:
True
(ix) 3 tan-1 3 = tan-1
Solution:
False
(x) tan-1 2 + tan-1 3 = –
Solution:
False
(xi) 2 sin-1 45 = sin-1
Solution:
False
(xii) The equation tan-1 (cotx) = 2x has exactly two real solutions.
Solution:
True
Question 3.
Express the value of the following in simplest form.
(i) sin (2 sin-1 0.6)
Solution:
sin (2 sin-1 0.6)
(ii) tan (π4 + 2 cot-1 3)
Solution:
(iii) cos (2 sin-1 x)
Solution:
(iv) tan (cos-1 x)
Solution:
(v) tan-1 (xy ) – tan-1
Solution:
(vi) cosec (cos-1 35 + cos-1 45 )
Solution:
(vii) sin-1 15√ + cos-1
Solution:
(viii) sin cos-1 tan sec √2
Solution:
sin cos-1 tan sec √2
= sin cos-1 tan sec
= sin cos-1 1 = sin 0 = 0
(ix) sin (2 tan-1 1−x1+x−−−√ )
Solution:
(x) tan
Solution:
(xi) sin cot-1 cos tan-1 x.
Solution:
(xii) tan-1
Solution:
Question 4.
Prove the following statements:
(i) sin-1 35 + sin-1 817 = cos-1
Solution:
(ii) sin-1 35 + cos-1 1213 = cos-1
Solution:
(iii) tan-1 17 + tan-1 113 = tan-1
Solution:
(iv) tan-1 12 + tan-1 15 + tan-1 18 =
Solution:
(v) tan ( 2tan-1 15 – π4 ) + 717 = 0
Solution:
Question 5.
Prove the following statements:
(i) cot-1 9 + cosec-1 41√4 =
Solution:
(ii) sin-1 45 + 2 tan-1 13 =
Solution:
(iii) 4 tan-1 15 – tan-1 170 + tan-1 199 =
Solution:
(iv) 2 tan-1 15 + sec-1 52√7 + 2 tan-1 18 =
Solution:
(v) cos-1 1213 + 2 cos-1 6465−−√ + cos-1 4950−−√ = cos-1
Solution:
(vi) tan2 cos-1 13√ + cot2 sin-1 15√ = 6
Solution:
tan2 cos-1 13√ + cot2 sin-1
= tan2 tan-1 √2 + cot2 cot-1 (2)
= 2 + 4 = 6
(vii) cos tan-1 cot sin-1 x = x.
Solution.
Question 6.
Prove the following statements:
(i) cot-1 (tan 2x) + cot-1 (- tan 2x) = π
Solution:
(ii) tan-1 x + cot-1 (x + 1) = tan-1 (x2 + x + 1)
Solution:
(iii) tan-1 (a−b1+ab ) + tan-1 (b−c1+bc ) = tan-1 a – tan-1 c.
Solution:
tan-1 (a−b1+ab ) + tan-1 (b−c1+bc )
= tan-1 a – tan-1 b + tan-1 b – tan-1 c
= tan-1 a – tan-1 c.
(iv) cot-1 pq+1p−q + cot-1 qr+1q−r + cot-1 rp+1r−p = 0
Solution:
(v)
Solution:
Question 7.
Prove the following statements:
(i) tan-1 2a−bb3√ + tan-1 2b−aa3√ =
Solution:
(ii) tan-1 1x+y + tan-1 yx2+xy+1 = tan-1
Solution:
(iii) sin-1 x−qp−q−−−√ = cos-1 p−xp−q−−−√ = cot-1
Solution:
(iv) sin2 (sin-1 x + sin-1 y + sin-1 z) = cos2 (cos-1 x + cos-1 y + cos-1 z)
Solution:
(v) tan (tan-1 x + tan-1 y + tan-1 z) = cot (cot-1 x + cot-1 y + cot-1 z)
Solution:
Question 8.
(i) If sin-1 x + sin-1 y + sin-1 z = π, show that x1−x2−−−−−√ + x1−y2−−−−−√ + x1−z2−−−−−√ = 2xyz
Solution:
Let sin-1 x = α, sin-1 y = β, sin-1 z = γ
∴ α + β + γ = π
∴ x = sin α, y = sin β, z = sin γ
or, α + β = π – γ
or, sin(α + β) = sin(π – γ) = sin γ
and cos(α + β) = cos(π – γ) = – cos γ
(ii) tan-1 x + tan-1 y + tan-1 z = π show that x + y + z = xyz
Solution:
(iii) tan-1 x + tan-1 y + tan-1 z = π2 . Show that xy + yz + zx = 1
Solution:
or, 1 – xy – yz – zx = 0
⇒ xy + yz + zx = 1
(iv) If r2 = x2 +y2 + z2, Prove that tan-1 yzxr + tan-1 zxyr + tan-1 xyzr =
Solution:
(v) In a triangle ABC if m∠A = 90°, prove that tan-1 ba+c + tan-1 ca+b = π4 . where a, b, and c are sides of the triangle.
Solution:
L.H.S. tan-1 ba+c + tan-1
Question 9.
Solve
(i) cos (2 sin-1 x) = 1/9
Solution:
(ii) sin-1 x + sin-1 (1 – x) =
Solution:
sin-1 x + sin-1 (1 – x) =
or, sin-1 (1 – x) = π2 – sin-1 x = cos-1 x
or, sin-1 (1 – x) = sin-1
or, 1 – x =
or, 1 + x2 – 2x = 1 – x2
or, 2x2 – 2x = 0
or, 2x (x – 1) = 0
∴ x = 0 or, 1
(iii) sin-1 (1 – x) – 2 sin-1 x =
Solution:
sin-1 (1 – x) – 2 sin-1 x =
⇒ – 2 sin-1 x = π2 – sin-1 (1 – x)
⇒ cos-1 (1 – x)
⇒ cos (– 2 sin-1 x) = 1 – x ….. (1)
Let sin-1 Θ ⇒ sin Θ
Now cos (– 2 sin-1 x) = cos (-2Θ)
= cos 2Θ = 1 – 2 sin2 Θ = 1 – 2x2
Using in (1) we get
1 – 2x2 = 1 – x
⇒ 2x2 – x = 0 ⇒ x (2x – 1) = 0
⇒ x = 0, ½, But x = ½ does not
Satisfy the given equation, Thus x = 0.
(iv) cos-1 x + sin-1 x2 =
Solution:
(v) tan-1 x−1x−2 + tan-1 x+1x+2 =
Solution:
(vi) tan-1 12x+1 + tan-1 14x+1 = tan-1
Solution:
(vii) 3 sin-1 2x1+x2 – 4 cos-1 1−x21+x2 + 2 tan-1 2x1−x2 =
Solution:
(viii) cot-1 1x−1 + cot-1 1x + cot-1 1x+1 = cot-1
Solution:
(ix) cot-1 1−x22x = cosec-1 1+a22a – sec-1
Solution:
(x) sin-1 (2a1+a2) + sin-1 (2b1+b2) = 2 tan-1 x
Solution:
(xi) sin-1 y – cos-1 x = cos-1
Solution:
(xii) sin-1 2x + sin-1 x =
Solution:
Question 10.
Rectify the error if any in the following:
sin-1 45 + sin-1 1213 + sin-1
Solution:
Question 11.
Prove that:
(i) cos-1 (b+acosxa+bcosx) = 2 tan-1
Solution:
(ii) tan (π4+12cos−1ab) + tan
Solution:
(iii) tan-1 xryz−−√ + tan-1 yryx−−√ + tan-1 zrxy−−√ = π where r = x + y +z.
Solution:
Question 12.
(i) If cos-1 (xa ) + cos-1 (yb ) = Θ, prove that x2a2 – 2xab cos Θ + y2b2 = sin2 Θ.
Solution:
(ii) If cos-1 (xy ) + cos-1 (y3 ) = Θ, prove that 9x2 – 12xy cos Θ + 4y2 = 36 sin2 Θ.
Solution:
(iii) If sin-1 (xa ) + sin-1 (yb ) = sin-1 (c2ab ) prove that b2x2 + 2xy a2b2−c4−−−−−−−√ a2y2 = c2
Solution:
(iv) If sin-1 (xa ) + sin-1 (yb ) = α prove that x2a2 + 2xyab cos α + y2b2 = sin2 α
Solution:
(v) If sin-1 x + sin-1 y + sin-1 z = π prove that x2 + y2 + z2 + 4x2y2z2 = 2 ( x2y2 + y2z2 + z2x2 )
Solution:
Question 13.
Solve the following equations:
(i) tan-1 x−1x+1 + tan-1 2x−12x+1 = tan-1
Solution:
(ii) tan-1 13 + tan-1 15 + tan-1 17 + tan-1 x =
Solution:
(iii) cos-1 (x+12) + cos-1 x+ cos-1 (x−12) =
Solution:
(iv) 3tan-1 12+3√ – tan-1 1x = tan-1
Solution:
Tags:
class 12th

.jpg)






.jpg)



.jpg)
.jpg)
.jpg)
.jpg)
.jpg)



.jpg)
.jpg)

.jpg)




.jpg)
.jpg)
.jpg)

.jpg)
.jpg)
.jpg)
.jpg)
.jpg)



.jpg)
.jpg)
.jpg)
.jpg)
.jpg)
.jpg)
.jpg)
.jpg)
.jpg)
.jpg)
.jpg)
.jpg)
.jpg)
.jpg)
.jpg)
.jpg)
.jpg)
.jpg)
.jpg)
.jpg)
.jpg)
.jpg)
.jpg)
.jpg)
.jpg)
.jpg)
.jpg)
.jpg)
.jpg)
.jpg)
.jpg)
.jpg)